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Abstract
In an increasingly information-driven society, the volume of digital
footprints left by individuals has surged significantly. Safeguarding
the anonymity of data generated by computing devices is becom-
ing more challenging as these offer deep insights into personal
behaviors. We propose a user-centric and privacy-preserving data
space for unlinkable data sharing based on a central intermediary.
By integrating differential privacy techniques with fine-grained
access control, our system allows data providers to store their data
confidentially and unlinkable at the intermediary. Data consumers
can then locate and request data via this intermediary, ensuring
that data providers remain informed without revealing the origin
of the data. Additionally, the intermediary facilitates continuous
data sharing, requiring only a single data upload. Our approach is
designed to protect data providers from both external and internal
attackers, as well as from an honest-but-curious intermediary.

CCS Concepts
• Security and privacy→ Privacy-preserving protocols; Ac-
cess control; Pseudonymity, anonymity and untraceability.
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1 Introduction
In today’s world, the convergence of digital and physical domains
has led to an unprecedented increase in data generation. The ex-
tensive collection of user and sensor data raises two significant
issues: the lack of transparency in how the data is used and the
diminishing control over it. Often, such data has a personal dimen-
sion, enabling deep insights into individuals’ preferences [3] and
behavioral patterns [6]. It has become increasingly challenging for
individuals to understand which data is being collected about them
and with whom it is being shared. This is especially relevant as
data breaches increase in frequency and magnitude [7]. While in
Europe, the General Data Protection Regulation (GDPR) has been
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implemented to enhance privacy – and often parts of the world
might follow – it has unfortunately not met expectations [17]. The
unchecked data collection practices also continue despite the GDPR.
Thus, it is vital to ensure that users have sovereignty over their data,
i.e., with whom it is shared, for how long, and for what purpose.

A fundamental challenge lies in managing user data, particu-
larly regarding privacy and security. Data spaces have emerged
as a promising solution, offering a secure and trustworthy envi-
ronment [13]. These data spaces can be realized through a data
intermediary [2, 10] that securely stores data and obtains explicit
permission from data providers. Such an intermediary aligns the
interests of data providers – who seek to maintain sovereignty over
their data – with the needs of data consumers for research and
innovation. As mediators, data intermediaries can bridge the gap
between providers and consumers in the context of data spaces.

The Urban Data Trustee model highlights the critical issue of
data monopolies. For example, in the Google Sidewalk Labs project
in Toronto [2], a single company’s exclusive control over urban
data led to public distrust and low acceptance. In such cases, inter-
mediaries can play a crucial role in preserving data sovereignty by
ensuring that personal data is shared according to the preferences
of individual data subjects. However, a centralized intermediary
possessing unrestricted access to user data becomes an attractive
target for malicious actors. To address this concern, we have identi-
fied four functional and two non-functional requirements for an
intermediary-based system. The functional requirements are data
confidentiality and controlled access – to prevent unauthorized data
retrieval – and anonymity and unlinkability – to protect the pri-
vacy of data providers and ensure their communications cannot
be associated with them. The non-functional requirements include
efficiency, demanding optimal resource utilization, and scalability,
requiring the system to scale linearly with increases in data volume,
providers, and consumers. We also assume the presence of various
types of attackers. An external attacker operates outside the sys-
tem, aiming to exploit vulnerabilities, eavesdrop on traffic, or gain
unauthorized access. An internal attacker acts within the system,
leveraging privileged access to violate protocol specifications or
access data without authorization. The intermediary is assumed
to be honest-but-curious: it follows established protocols but may
attempt to infer additional information. While it lacks the keys to
decrypt stored data, it may analyze traffic patterns or metadata
to deanonymize data providers or infer encrypted content. Cru-
cially, its curiosity is limited to passive observation without active
interference in the protocol flow.

In response to these challenges, it is vital to implement tech-
niques that protect user data while ensuring that the intermediary
cannot directly read the stored data. Achieving this goal calls for
privacy-preserving methods that guarantee unlinkability for data
providers, enabling them to exercise access control over their data.
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The main contribution of this paper is a novel approach for secure,
privacy-preserving, and unlinkable data sharing with dynamic ac-
cess control. We propose integrating differential privacy techniques
with fine-grained dynamic access control mechanisms. Our system,
which relies on an intermediary, ensures both the confidentiality
of the data held by the intermediary and its unlinkability.

The remainder of this paper is structured as follows: Section 2
summarizes related work. Section 3 presents our proposed sys-
tem. Finally, Section 4 concludes the paper and summarizes future
research directions.

2 Related Work
Privacy-preserving data sharing systems have been a focus of re-
search for many years, encompassing both centralized [1, 4, 8, 14]
and decentralized [9, 11, 15, 16] approaches. Traditional Private
Information Retrieval (PIR) systems prioritize consumer privacy
but often neglect provider protection and robust access control
mechanisms. For instance, Chor et al.[8] introduced a PIR system
without security or access restrictions. Persona[4], a centralized in-
termediary, uses attribute-based encryption for fine-grained sharing
policies. However, it accumulates metadata, violating unlinkability,
and lacks efficient open search and integrity guarantees. Similarly,
SeDaSC [1] and Credential [14] enhance data sharing in cloud
environments but compromise provider anonymity due to meta-
data exposure and limited support for many-to-many interactions.
Decentralized systems such as Tor [11] and Freenet [9] focus on
sender-receiver privacy but lack mechanisms for controlled access
and efficient distribution of large datasets. Peer-to-peer systems like
OneSwarm [15] and SQL-based retrieval frameworks like PrivAp-
prox [5] improve anonymity through decentralized routing or proxy
use. However, OneSwarm’s protocol vulnerabilities undermine its
anonymity guarantees, while PrivApprox lacks integrity assurances
and fine-grained access control. Blockchain-based approaches, such
as the system by Naz et al. [16], provide role-based access using
IPFS and smart contracts but fail to ensure unlinkability.

In summary, existing systems address anonymity for data con-
sumers and, in some cases, data providers, but they lack fine-grained
access control mechanisms. Most solutions fail to meet unlinkability
requirements and often limit data searches to predefined identifiers,
lacking support for efficient open search. In contrast, our approach
ensures that data providers retain full control over their data, while
data consumers require explicit permission to access it.

3 Unlinkable Data Sharing with Dynamic
Access Control

We propose an approach that enables data providers to share their
data anonymously and unlinkable with data consumers via a central
data intermediary that is honest but curious. With the help of the
intermediary, consumers can submit requests for data approval
to providers. The providers check the requests and can accept or
reject them. The data is only forwarded to the consumer once the
providers have given their consent.

Our unlinkable data sharing system with dynamic access control
consists of three entities: data providers, data consumers, and a
data intermediary and is shown in Figure 1. The system has four

main functions: Initialization, Storage of data, Localization of data
and data Retrieval. These functions are described in the following.

Initialization: During the initialization phase, providers and con-
sumers sign upwith the intermediary using their chosen credentials.
After successful registration, providers and consumers get a unique
ID for logging in.

Storage: The intermediarymust facilitate the storage of encrypted
data blocks without linking them to the provider, ensuring that
metadata such as creation time or origin location remains exclu-
sively with the provider. We assume a set of data providers P and a
set of data consumers C who exchange data via a data intermediary
I. A provider 𝑝 ∈ P encrypts a plaintext 𝑑𝑖 into a ciphertext block
𝑏𝑖 using the function 𝑏𝑖 ← 𝑒𝑛𝑐 (𝑑𝑖 , 𝐾𝑖 ), where 𝐾𝑖 is a symmetric
encryption key, 𝑖 ≥ 1, and all blocks have a fixed size 𝑙 . Conversely,
a consumer 𝑐 ∈ C decrypts a ciphertext block 𝑏𝑖 back into plaintext
𝑑𝑖 using the function 𝑑𝑖 ← 𝑑𝑒𝑐 (𝑏𝑖 , 𝐾𝑖 ). The intermediary I man-
ages a database containing 𝑛 tuples (𝑖1, 𝑏1), . . . , (𝑖𝑛, 𝑏𝑛), where 𝑖
represents the address of an encrypted data block 𝑏𝑖 . Plaintexts that
span multiple blocks are divided into uniformly sized segments,
each assigned a unique address 𝑖 . A data provider, such as an ap-
plication collecting data, can encrypt and store data for secure and
private sharing with a third party. The provider encrypts plaintext
𝑑𝑖 with key 𝐾𝑖 , generating ciphertext block 𝑏𝑖 . A uniformly random
address 𝑖 is assigned, and the resulting tuple (𝑖, 𝑏𝑖 ) is transmitted
anonymously (e.g., via Tor) to the intermediary I. Thus, the inter-
mediary has no access to the plaintext data and cannot determine
which provider owns which data.

Localization: A key responsibility of the intermediary is to match
incoming consumer requests with suitable providers while min-
imizing system overhead caused by unnecessary messaging. To
achieve this, the intermediary maintains a mapping of topics to
providers, where each topic represents a type of data (e.g., location
or humidity) that a provider can supply. However, this mapping is
sensitive, as it reveals information about providers and must there-
fore be protected. The objective is to balance minimizing system
message load with safeguarding the privacy of the topic-provider
relationships. For this purpose, we propose the use of differential
privacy to construct so-called anonymity sets. Providers initially
submit a list of topics for which they can offer data, enabling the in-
termediary to establish the mapping between topics and providers.
To ensure unlinkability, providers augment or obfuscate their topic
lists by introducing noise–either by adding unrelated topics or omit-
ting actual ones. The resulting set of topics, T ′ ⊆ T, creates an
anonymity set in which the provider’s genuine topics are indistin-
guishable from the added “cover” topics. For instance, a provider
with location data might include unrelated topics like humidity in
their list. The intermediary then records the anonymized topic set
T ′ alongside the provider’s identifier as a tuple (T ′, ID) in its topic
lookup table. This approach complicates an attacker’s efforts to
discern the specific topics a provider can supply, enhancing privacy
while maintaining the system’s functionality. To construct these
anonymized topic sets, we propose to use randomized response
techniques, a variant of differential privacy. Randomized response
works by asking individuals to randomly flip a coin in private, then
answer the question truthfully if the coin lands on heads. Other-
wise, the individual flips a second coin in private, answering “Yes”
if the coin lands on heads or “No” if it lands on tails. The ability
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Figure 1: Model of our approach. On the left, a data provider (𝑝1) creates a set of topics ({𝑡 ′1, 𝑡4, 𝑡
′
6}), distinguishing real from

cover topics (primed ones). On the right, a data consumer (𝑐1) requests data on topic 𝑡4. The intermediary stores encrypted data
blocks 𝑏𝑖 with addresses and a lookup table.

to plausible deny the true response preserves the participants’ pri-
vacy. Additionally, the algorithm is proven to be 𝜀-differentially
private [12], enabling the construction of anonymity sets locally.

In general, data localization works as follows. A data consumer,
e.g., a research institution, expresses interest in obtaining data by
sending a request to the intermediary. The data intermediary then
attempts to locate data providers with potentially relevant data and
forwards the request to them. Crucially, the intermediary does not
know which data belongs to which specific provider. To achieve
this, the intermediary utilizes a lookup table that lists the topics
associated with the data each provider holds.

Retrieval: Data consumers can request data for a specific topic
from the intermediary. The intermediary then looks up the topic
in its table (which contains all topics reported by all providers)
and forwards the request to all potential providers. To prevent
the intermediary from distinguishing which data providers have
data for a particular topic and which do not, the protocol requires
all data providers that have reported the topic to respond to the
request. This ensures that no information is leaked based on the
responses. When a data provider holds actual data, it encrypts the
data decryption key using the data recipient’s public key (𝐾+). The
provider then sends the encrypted key, along with the addresses of
the relevant data blocks, to the data recipient via the intermediary in
response to the request. The data consumer can use its private key
(𝐾−) to decrypt the message and retrieve the tuple (𝑖, 𝐾𝑖 ), where 𝑖
is the address of the data block, and 𝐾𝑖 the respective decryption
key. Finally, the consumer proceeds to download the blocks and
decrypt them using the shared key 𝐾𝑖 . If a data provider does not
have data for a requested (cover) topic, it responds with a dummy
key and a fixed but arbitrary block address.

4 Conclusion
This paper presents an unlinkable data sharing system with dy-
namic access control, designed to enhance users’ sovereignty in
deciding with whom their data is shared.

In future work, we will test various differential privacy methods
for our data localization and identify ways to allow individuals
to balance privacy with message load. Additionally, we will eval-
uate these methods, providing a theoretical analysis of message
complexity and proofs of their differential privacy, along with an
𝜀-privacy value.
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